Chase Joyner

802 Homework 2
February 8, 2017

Problem 1:

Show that an alternative expression for $h_{i i}$ in Theorem 9.2(iii) is the following:

$$
h_{i i}=\frac{1}{n}+\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \sum_{r=1}^{k} \frac{1}{\lambda_{r}} \cos ^{2} \theta_{i r},
$$

where $\theta_{i r}$ is the angle between $\mathbf{x}_{1 i}$ and \mathbf{a}_{r}, the r th eigenvector of $\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}$. Thus $h_{i i}$ is large if $\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)$ is large or if $\theta_{i r}$ is small for some r.

Solution: First recall the expression for $h_{i i}$ is given by

$$
h_{i i}=\frac{1}{n}+\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) .
$$

By equations (2.101) and (2.104) in the textbook, we can write

$$
\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1}=\sum_{r=1}^{k} \frac{1}{\lambda_{r}} \mathbf{a}_{r} \mathbf{a}_{r}^{\prime} .
$$

Therefore, plugging this in, we have

$$
\begin{aligned}
h_{i i} & =\frac{1}{n}+\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\sum_{r=1}^{k} \frac{1}{\lambda_{r}} \mathbf{a}_{r} \mathbf{a}_{r}^{\prime}\right)\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \\
& =\frac{1}{n}+\sum_{r=1}^{k} \frac{1}{\lambda_{r}}\left[\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}\right]\left[\mathbf{a}_{r}^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)\right] \\
& =\frac{1}{n}+\sum_{r=1}^{k} \frac{1}{\lambda_{r}}\left[\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}\right]^{2} .
\end{aligned}
$$

Now, by the law of cosines, we know that if θ is the angle between vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{a^{\prime} b}{\sqrt{a^{\prime} a} \sqrt{b^{\prime} b}} .
$$

Therefore, we have for our purposes that

$$
\cos \theta_{i r}=\frac{\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}}{\sqrt{\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \mathbf{a}_{r}^{\prime} \mathbf{a}_{r}}} .
$$

Squaring both sides, we obtain

$$
\cos ^{2} \theta_{i r}=\frac{\left[\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}\right]^{2}}{\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \mathbf{a}_{r}^{\prime} \mathbf{a}_{r}}
$$

and hence

$$
\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \mathbf{a}_{r}^{\prime} \mathbf{a}_{r} \cos ^{2} \theta_{i r}=\left[\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}\right]^{2}
$$

Noting that $\mathbf{a}_{r}^{\prime} \mathbf{a}_{r}=1$ since it is the eigenvector of a centered matrix, plugging into our simplified version of $h_{i i}$, we get that

$$
\begin{aligned}
h_{i i} & =\frac{1}{n}+\sum_{r=1}^{k} \frac{1}{\lambda_{r}}\left[\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime} \mathbf{a}_{r}\right]^{2} \\
& =\frac{1}{n}+\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right)^{\prime}\left(\mathbf{x}_{1 i}-\overline{\mathbf{x}}_{1}\right) \sum_{r=1}^{k} \frac{1}{\lambda_{r}} \cos ^{2} \theta_{i r}
\end{aligned}
$$

which proves the result.

Problem 2:

Show that $\frac{1}{n} \leq h_{i i}+\widehat{\varepsilon}_{i}^{2} / \widehat{\varepsilon}^{\prime} \widehat{\varepsilon} \leq 1$ as in (9.24). The following steps are suggested:
(a) Let \mathbf{H}^{\star} be the hat matrix corresponding to the augmented matrix (\mathbf{X}, \mathbf{y}). Then

$$
\begin{aligned}
\mathbf{H}^{\star} & =(\mathbf{X}, \mathbf{y})\left[(\mathbf{X}, \mathbf{y})^{\prime}(\mathbf{X}, \mathbf{y})\right]^{-1}(\mathbf{X}, \mathbf{y})^{\prime} \\
& =(\mathbf{X}, \mathbf{y})\left(\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{y}^{\prime} \mathbf{X} & \mathbf{y}^{\prime} \mathbf{y}
\end{array}\right)^{-1}\binom{\mathbf{X}^{\prime}}{\mathbf{y}^{\prime}} .
\end{aligned}
$$

Use the inverse of a partitioned matrix in (2.50) with $\mathbf{A}_{11}=\mathbf{X}^{\prime} \mathbf{X}, \mathbf{a}_{12}=\mathbf{X}^{\prime} \mathbf{y}, \mathbf{a}_{21}=\mathbf{y}^{\prime} \mathbf{X}$, and $a_{22}=\mathbf{y}^{\prime} \mathbf{y}$ to obtain

$$
\left.\begin{array}{rl}
\mathbf{H}^{\star} & =\mathbf{H}+\frac{1}{b}\left[\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\mathbf{y y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \mathbf{y}^{\prime}+\mathbf{y} \mathbf{y}^{\prime}\right] \\
& =\mathbf{H}+\frac{1}{b}[\mathbf{H y y}
\end{array} \mathbf{H}-\mathbf{y} \mathbf{y}^{\prime} \mathbf{H}-\mathbf{H y y} \mathbf{y}^{\prime}+\mathbf{y} \mathbf{y}^{\prime}\right], ~ \$
$$

where $b=\mathbf{y}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$.
Solution: Using (2.50) and the partitions defined above, we have

$$
\mathbf{H}^{\star}=\frac{1}{b}(\mathbf{X}, \mathbf{y})\left(\begin{array}{cc}
b \mathbf{A}_{11}^{-1}+\mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{A}_{11}^{-1} & -\mathbf{A}_{11}^{-1} \mathbf{a}_{12} \\
-\mathbf{a}_{21} \mathbf{A}_{11}^{-1} & 1
\end{array}\right)\binom{\mathbf{X}^{\prime}}{\mathbf{y}^{\prime}}
$$

where $b=a_{22}-\mathbf{a}_{21} \mathbf{A}_{11}^{-1} \mathbf{a}_{12}$. Multiplying further, we get

$$
\begin{aligned}
\mathbf{H}^{\star} & =\frac{1}{b}(\mathbf{X}, \mathbf{y})\binom{b \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}+\mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}-\mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{y}^{\prime}}{-\mathbf{a}_{21} \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}+\mathbf{y}^{\prime}} \\
& =\frac{1}{b}\left[b \mathbf{X} \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}+\mathbf{X} \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}-\mathbf{X} \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{y}^{\prime}-\mathbf{y} \mathbf{a}_{21} \mathbf{A}_{11}^{-1} \mathbf{X}^{\prime}+\mathbf{y} \mathbf{y}^{\prime}\right] \\
& =\mathbf{H}+\frac{1}{b}\left[\mathbf{H y y} \mathbf{y} \mathbf{H}-\mathbf{H y y} \mathbf{y}^{\prime}-\mathbf{y} \mathbf{y}^{\prime} \mathbf{H}+\mathbf{y} \mathbf{y}^{\prime}\right]
\end{aligned}
$$

(b) Show that the above expression factors into

$$
\mathbf{H}^{\star}=\mathbf{H}+\frac{(\mathbf{I}-\mathbf{H}) \mathbf{y} \mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H})}{\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y}}=\mathbf{H}+\frac{\widehat{\varepsilon} \widehat{\varepsilon}^{\prime}}{\widehat{\varepsilon}^{\prime} \widehat{\varepsilon},}
$$

which gives $h_{i i}^{\star}=h_{i i}+\widehat{\varepsilon}_{i}^{2} / \widehat{\varepsilon}^{\prime} \widehat{\varepsilon}$.
Solution: Clearly we can factor b into

$$
b=\mathbf{y}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y} .
$$

Now, notice that

$$
\begin{aligned}
\mathbf{H y y}^{\prime} \mathbf{H}-\mathbf{y y}^{\prime} \mathbf{H}-\mathbf{H y y}^{\prime}+\mathbf{y y}^{\prime} & =(\mathbf{I}-\mathbf{H}) \mathbf{y y}^{\prime}+\mathbf{H y y} \mathbf{y}^{\prime} \mathbf{H}-\mathbf{y y}^{\prime} \mathbf{H} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{y y}^{\prime}-(\mathbf{I}-\mathbf{H}) \mathbf{y y}^{\prime} \mathbf{H} \\
& =(\mathbf{I}-\mathbf{H})\left(\mathbf{y y}^{\prime}-\mathbf{y} \mathbf{y}^{\prime} \mathbf{H}\right) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{y y}^{\prime}(\mathbf{I}-\mathbf{H}) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\mathbf{H}^{\star} & =\mathbf{H}+\frac{1}{b}\left[\mathbf{H y y}^{\prime} \mathbf{H}-\mathbf{y y}^{\prime} \mathbf{H}-\mathbf{H y y}^{\prime}+\mathbf{y y}^{\prime}\right] \\
& =\mathbf{H}+\frac{(\mathbf{I}-\mathbf{H}) \mathbf{y y} \mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H})}{\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y}}=\mathbf{H}+\frac{\widehat{\varepsilon} \widehat{\varepsilon}^{\prime}}{\widehat{\varepsilon}^{\prime} \widehat{\varepsilon}}
\end{aligned}
$$

(c) The proof is easily completed by noting that \mathbf{H}^{\star} is a hat matrix and therefore $(1 / n) \leq h_{i i}^{\star} \leq 1$ by Theorem 9.2(i).

Solution: By construction of \mathbf{H}^{\star} in part (a), we notice it is a hat matrix and so by theorem 9.2,

$$
\frac{1}{n} \leq h_{i i}^{\star} \leq 1
$$

for all $i=1, \ldots, n$. Therefore, by part (b), we have

$$
\frac{1}{n} \leq h_{i i}+\widehat{\varepsilon}_{i}^{2} / \widehat{\varepsilon}^{\prime} \widehat{\varepsilon} \leq 1
$$

This proves the overall result.

Problem 3:

Show that $\widehat{\boldsymbol{\beta}}_{(i)}=\widehat{\boldsymbol{\beta}}-\widehat{\varepsilon}_{i}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} /\left(1-h_{i i}\right)$ as in (9.29). The following steps are suggested:
(a) Show that $\mathbf{X}^{\prime} \mathbf{X}=\mathbf{X}_{(i)}^{\prime} \mathbf{X}_{(i)}+\mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$ and that $\mathbf{X}^{\prime} \mathbf{y}=\mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)}+\mathbf{x}_{i} y_{i}$.

Solution: Suppose that \mathbf{X} is $n \times k$ and define the row vectors

$$
\mathbf{x}_{i}^{\prime}=\left(1, x_{i 1}, x_{i 2}, \ldots, x_{i k}\right)
$$

for $i=1, \ldots, n$. In this fashion, we can write

$$
\mathbf{X}=\left(\begin{array}{c}
\mathrm{x}_{1}^{\prime} \\
\mathrm{x}_{2}^{\prime} \\
\vdots \\
\mathrm{x}_{n}^{\prime}
\end{array}\right)
$$

Then, notice that

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{X} & =\left(\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{k}
\end{array}\right)\left(\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\vdots \\
\mathbf{x}_{k}^{\prime}
\end{array}\right)=\sum_{j=1}^{k} \mathbf{x}_{j} \mathbf{x}_{j}^{\prime}=\sum_{\substack{j=1 \\
j \neq i}}^{k} \mathbf{x}_{j} \mathbf{x}_{j}^{\prime}+\mathbf{x}_{i} \mathbf{x}_{i}^{\prime} \\
& =\mathbf{X}_{(i)}^{\prime} \mathbf{X}_{(i)}+\mathbf{x}_{i} \mathbf{x}_{i}^{\prime} .
\end{aligned}
$$

Similarly, we find that

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{y} & =\left(\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{k}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\sum_{j=1}^{k} \mathbf{x}_{j} y_{j}=\sum_{\substack{j \neq i \\
j=1}}^{k} \mathbf{x}_{j} y_{j}+\mathbf{x}_{i} y_{i} \\
& =\mathbf{X}_{(i)} y_{(i)}+\mathbf{x}_{i} y_{i} .
\end{aligned}
$$

(b) Show that $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)}=\widehat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}$.

Solution: Recall that

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Therefore, the result follows immediately from part (a), i.e.

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left[\mathbf{X}_{(i)} y_{(i)}+\mathbf{x}_{i} y_{i}\right] \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{(i)} y_{(i)}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i} .
\end{aligned}
$$

Subtracting over, we obtain the result.
(c) Using the following adaptation of (2.53),

$$
\left(\mathbf{B}-\mathbf{c c}^{\prime}\right)^{-1}=\mathbf{B}^{-1}+\frac{\mathbf{B}^{-1} \mathbf{c c}^{\prime} \mathbf{B}^{-1}}{1-\mathbf{c}^{\prime} \mathbf{B}^{-1} \mathbf{c}}
$$

show that

$$
\widehat{\boldsymbol{\beta}}_{(i)}=\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}}{1-h_{i i}}\right] \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)} .
$$

Solution: Note that $\widehat{\boldsymbol{\beta}}_{(i)}$ is the estimate excluding the i th observation. Therefore, by part (a) and (2.53), we find

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{(i)} & =\left(\mathbf{X}_{(i)}^{\prime} \mathbf{X}_{(i)}\right)^{-1} \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)}=\left(\mathbf{X}^{\prime} \mathbf{X}-\mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)} \\
& =\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}}{1-\mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}}\right] \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)} .
\end{aligned}
$$

Recalling that $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}$, its i th diagonal element is $h_{i i}=\mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}$. Thus,

$$
\widehat{\boldsymbol{\beta}}_{(i)}=\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}}{1-h_{i i}}\right] \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)}
$$

(d) Using the result of parts (b) and (c), show that

$$
\widehat{\boldsymbol{\beta}}_{(i)}=\widehat{\boldsymbol{\beta}}-\frac{\widehat{\varepsilon}_{i}}{1-h_{i i}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}
$$

Solution: By parts (b) and (c), we have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{(i)} & =\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}}{1-h_{i i}}\right] \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}}{1-h_{i i}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{(i)}^{\prime} \mathbf{y}_{(i)} \\
& =\widehat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}}{1-h_{i i}}\left[\widehat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}\right] \\
& =\widehat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}}{1-h_{i i}}\left[\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}\right] \\
& =\widehat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} y_{i}+\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}}{1-h_{i i}}\left[\widehat{y}_{i}-h_{i i} y_{i}\right] \\
& =\widehat{\boldsymbol{\beta}}-\frac{\widehat{y}_{i}-y_{i}}{1-h_{i i}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \\
& =\widehat{\boldsymbol{\beta}}-\frac{\widehat{\varepsilon}_{i}}{1-h_{i i}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} .
\end{aligned}
$$

Problem 4:

Show that \mathbf{S} in (10.14) can be found as $\mathbf{S}=\sum_{i=1}^{n}\left(\mathbf{v}_{i}-\overline{\mathbf{v}}\right)\left(\mathbf{v}_{i}-\overline{\mathbf{v}}\right)^{\prime} /(n-1)$ as in (10.13).
Solution: Here, \mathbf{v}_{i} and $\overline{\mathbf{v}}$ denote

$$
\mathbf{v}_{i}=\binom{y_{i}}{\mathbf{x}_{i}} \quad \text { and } \quad \overline{\mathbf{v}}=\binom{\bar{y}}{\overline{\mathbf{x}}}
$$

Then, notice that

$$
\begin{aligned}
& \left(\mathbf{v}_{i}-\overline{\mathbf{v}}\right)\left(\mathbf{v}_{i}-\overline{\mathbf{v}}\right)^{\prime}=\left(\begin{array}{c}
y_{i}-\bar{y} \\
x_{i 1}-\bar{x}_{1} \\
\vdots \\
x_{i k}-\bar{x}_{k}
\end{array}\right)\left(\begin{array}{llll}
y_{i}-\bar{y} & x_{i 1}-\bar{x}_{1} & \cdots & \left.x_{i k}-\bar{x}_{k}\right) \\
=\left(\begin{array}{cccc}
\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right) & \left(y_{i}-\bar{y}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \cdots \cdots & \left(y_{i}-\bar{y}\right)\left(x_{i k}-\bar{x}_{k}\right) \\
\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right) & \left.\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 1}-\bar{x}_{1}\right)\right) & \cdots \cdots & \left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i k}-\bar{x}_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left(x_{i k}-\bar{x}_{k}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i k}-\bar{x}_{k}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \cdots \cdots & \left(x_{i k}-\bar{x}_{k}\right)\left(x_{i k}-\bar{x}_{k}\right)
\end{array}\right)
\end{array} . .\right.
\end{aligned}
$$

Summing up this matrix and dividing by $n-1$ gives the result.

Problem 5:

Show that $\operatorname{Cov}(y, w)=\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x}$ and $\operatorname{Var}(w)=\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x}$ as in (10.26), where $w=\mu_{y}+$ $\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)$.

Solution: This result is trivial since

$$
\operatorname{Cov}(y, w)=\operatorname{Cov}\left(y, \boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \mathbf{x}\right)=\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \operatorname{Cov}(y, \mathbf{x})=\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x}
$$

and also

$$
\begin{aligned}
\operatorname{Var}(w) & =\operatorname{Cov}(w, w)=\operatorname{Cov}\left(\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \mathbf{x}, \boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \mathbf{x}\right) \\
& =\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \operatorname{Cov}(\mathbf{x}, \mathbf{x}) \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x} \\
& =\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\Sigma}_{x x} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x} \\
& =\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x}
\end{aligned}
$$

Problem 6:

Verify that R^{2} can be expressed in terms of determinants as in (10.40) and (10.41).
Solution: First, by (2.72), a partitioned matrix such as

$$
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)
$$

has the determinant given by

$$
|\mathbf{A}|=\left|\mathbf{A}_{22}\right|\left|\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}\right|
$$

Then, recalling that

$$
\mathbf{S}=\left(\begin{array}{cc}
s_{y y} & \mathbf{s}_{y x}^{\prime} \\
\mathbf{s}_{y x} & \mathbf{S}_{x x}
\end{array}\right)
$$

we have its determinant is given by

$$
\begin{aligned}
|\mathbf{S}| & =\left|\mathbf{S}_{x x}\right|\left|s_{y y}-\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} \mathbf{s}_{y x}\right| \\
& =\left|\mathbf{S}_{x x}\right|\left(s_{y y}-\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} \mathbf{s}_{y x}\right)
\end{aligned}
$$

Notice that we can reformulate this as

$$
\frac{\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} \mathbf{s}_{y x}}{s_{y y}}=1-\frac{|\mathbf{S}|}{\left|\mathbf{S}_{x x}\right| s_{y y}}
$$

Now, we see that can write R^{2} as

$$
R^{2}=\frac{\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} \mathbf{s}_{y x}}{s_{y y}}=1-\frac{|\mathbf{S}|}{\left|\mathbf{S}_{x x}\right| s_{y y}}
$$

To show the second desired equality, we notice that

$$
\mathbf{S}=\mathbf{D R D}
$$

where \mathbf{D} is the diagonal matrix with entries $\sqrt{s_{y y}}, \sqrt{s_{11}}, \ldots, \sqrt{s_{k k}}$. Also, we have

$$
\mathbf{S}_{x x}=\mathbf{D}_{x} \mathbf{R}_{x x} \mathbf{D}_{x}
$$

where \mathbf{D}_{x} is the diagonal matrix with entries $\sqrt{s_{11}}, \ldots, \sqrt{s_{k k}}$. Therefore, we see that we can write the above as

$$
\begin{aligned}
R^{2} & =1-\frac{|\mathbf{S}|}{\left|\mathbf{S}_{x x}\right| s_{y y}}=1-\frac{|\mathbf{D R D}|}{\left|\mathbf{D}_{x} \mathbf{R}_{x x} \mathbf{D}_{x}\right| s_{y y}}=1-\frac{|\mathbf{D}|^{2}|\mathbf{R}|}{\left|\mathbf{D}_{x}\right|^{2}\left|\mathbf{R}_{x x}\right| s_{y y}} \\
& =1-\frac{|\mathbf{D}|^{2}|\mathbf{R}|}{|\mathbf{D}|^{2}\left|\mathbf{R}_{x x}\right|}=1-\frac{|\mathbf{R}|}{\left|\mathbf{R}_{x x}\right|}
\end{aligned}
$$

since the determinant of a diagonal matrix is the product of the diagonal.

Problem 7:

Prove Theorem 10.7 b . The theorem states: The linear function $t(\mathbf{x})$ that minimizes $E\left[(y-t(\mathbf{x}))^{2}\right]$ is given by $t(\mathbf{x})=\beta_{0}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}$, where

$$
\begin{aligned}
& \beta_{0}=\mu_{y}-\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\mu}_{x}, \\
& \boldsymbol{\beta}_{1}=\boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\sigma}_{y x} .
\end{aligned}
$$

Solution: By (4.33), we have that

$$
E[y \mid \mathbf{x}]=\mu_{y}+\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)
$$

Now, notice that

$$
\begin{aligned}
t(\mathbf{x}) & =\beta_{0}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}=\mu_{y}-\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\mu}_{x}+\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1} \mathbf{x} \\
& =\mu_{y}+\boldsymbol{\sigma}_{y x}^{\prime} \boldsymbol{\Sigma}_{x x}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right) \\
& =E[y \mid \mathbf{x}]
\end{aligned}
$$

Then, the result follows from theorem 10.7.

Problem 8:

Prove Theorem 10.7c. The theorem states: If $\left(y_{1}, \mathbf{x}_{1}^{\prime}\right), \ldots,\left(y_{n}, \mathbf{x}_{n}^{\prime}\right)$ is a random sample with mean vector and covariance matrix

$$
\widehat{\boldsymbol{\mu}}=\binom{\bar{y}}{\overline{\mathbf{x}}}, \quad \mathbf{S}=\left(\begin{array}{cc}
s_{y y} & \mathbf{s}_{y x}^{\prime} \\
\mathbf{s}_{y x} & \mathbf{S}_{x x}
\end{array}\right)
$$

then the estimators $\widehat{\beta}_{0}$ and $\widehat{\boldsymbol{\beta}}_{1}$ that minimizes $\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i}\right)^{2} / n$ are given by

$$
\begin{aligned}
& \widehat{\beta}_{0}=\bar{y}-\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} \overline{\mathbf{x}} \\
& \widehat{\boldsymbol{\beta}}_{1}=\mathbf{S}_{x x}^{-1} \mathbf{s}_{y x}
\end{aligned}
$$

Solution: First, we calculate

$$
\begin{aligned}
\frac{d}{d \widehat{\boldsymbol{\beta}}_{0}^{\prime}} \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i}\right)^{2} / n & =-2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i}\right) / n \\
& =-2 \bar{y}+2 \widehat{\beta}_{0}+2 \widehat{\boldsymbol{\beta}}_{1}^{\prime} \overline{\mathbf{x}} \stackrel{\text { set }}{=} 0
\end{aligned}
$$

which gives that $\widehat{\beta}_{0}=\bar{y}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \overline{\mathbf{x}}$. Now, we calculate the second partial derivative to be

$$
\begin{aligned}
\frac{d}{d \widehat{\boldsymbol{\beta}}_{1}^{\prime}} \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i}\right)^{2} / n & =-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i}\right) \mathbf{x}_{i}^{\prime} \\
& =-\frac{2}{n} \sum_{i=1}^{n}\left[y_{i} \mathbf{x}_{i}^{\prime}-\widehat{\beta}_{0} \mathbf{x}_{i}^{\prime}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right] .
\end{aligned}
$$

Setting this equal to the vector $\mathbf{0}$, we find that

$$
\begin{gathered}
-\frac{2}{n} \sum_{i=1}^{n}\left[y_{i} \mathbf{x}_{i}^{\prime}-\widehat{\beta}_{0} \mathbf{x}_{i}^{\prime}-\widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]=\mathbf{0} \\
\Longrightarrow \quad \sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime}-\sum_{i=1}^{n} \widehat{\beta}_{0} \mathbf{x}_{i}^{\prime}-\sum_{i=1}^{n} \widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}=\mathbf{0} \\
\Longrightarrow \quad \sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime}-n \overline{y \overline{\mathbf{x}}^{\prime}}+n \widehat{\boldsymbol{\beta}}_{1}^{\prime} \overline{\mathbf{x x}^{\prime}}-\sum_{i=1}^{n} \widehat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}=\mathbf{0} \\
\Longrightarrow \quad \\
\quad \widehat{\boldsymbol{\beta}}_{1}^{\prime}=\left(\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime}-n \overline{\mathrm{y}} \mathbf{x}^{\prime}\right)\left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}-n \overline{\mathbf{x x}^{\prime}}\right)^{-1} \\
=\mathbf{s}_{y x}^{\prime} \mathbf{S}_{x x}^{-1} .
\end{gathered}
$$

Therefore, we have that

$$
\widehat{\boldsymbol{\beta}}_{1}=\mathbf{S}_{x x}^{-1} \mathbf{s}_{y x} .
$$

Plugging back into the expression for $\widehat{\beta}_{0}$ above finishes the result.

