Chase Joyner

802 Homework 2

February 8, 2017

Problem 1:

Show that an alternative expression for h;; in Theorem 9.2(iii) is the following:
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where 0;, is the angle between x3; and a,, the rth eigenvector of X/X,.. Thus h; is large if
(x1; — X1)"(x1; — X1) is large or if 6;, is small for some r.

Solution: First recall the expression for h;; is given by
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By equations (2.101) and (2.104) in the textbook, we can write

Therefore, plugging this in, we have
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Now, by the law of cosines, we know that if # is the angle between vectors a and b, then
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Therefore, we have for our purposes that
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Squaring both sides, we obtain
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and hence
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Noting that ala, = 1 since it is the eigenvector of a centered matrix, plugging into our

simplified version of h;;, we get that
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which proves the result.

Problem 2:

Show that L < h;; +&7/€’€ <1 as in (9.24). The following steps are suggested:
(a) Let H* be the hat matrix corresponding to the augmented matrix (X,y). Then
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Use the inverse of a partitioned matrix in (2.50) with A;; = X'X, a;9 = X'y, as; = y'X,
and ag = y'y to obtain
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where b = y'y — yX(X'X) "' Xy.
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Solution: Using (2.50) and the partitions defined above, we have
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where b = a9y — 321A1_11a12. Multiplying further, we get
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(b) Show that the above expression factors into
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which gives h¥; = h;; + 2 /€'E.
Solution: Clearly we can factor b into
b=y'y —yX(X'X)"' X'y =y'(I-H)y.

Now, notice that

Hyy'H - yy'H-Hyy +yy = (I-H)yy + Hyy'H - yy'H
=(I-Hyy -(I-H)yy'H
= (I-H)(yy —yy'H)
= (I-H)yy'(I-H).

Therefore, we have
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(c) The proof is easily completed by noting that H* is a hat matrix and therefore (1/n) < h}; <1
by Theorem 9.2(i).

Solution: By construction of H* in part (a), we notice it is a hat matrix and so by
theorem 9.2,

<h;<1
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for all i = 1,...,n. Therefore, by part (b), we have
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This proves the overall result.

Problem 3:
Show that B\(i) =B— £(X'X)71x;/(1 — hy;) as in (9.29). The following steps are suggested:
(a) Show that X'X = X’(i)X(i) + x;x; and that X'y = X’@Y(i) + X;U;.
Solution: Suppose that X is n x k and define the row vectors

x; = (1, i1, Tig, ..., Tik)



for ¢ = 1,...,n. In this fashion, we can write
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Then, notice that
x) .
X/
X'X=(x1 x2 -+ xp) :2 Zx] ijx + XX,
: =1
X;{ ! J?ﬁl
Similarly, we find that
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(b) Show that (X'X)™1X{, () = B — (X'X) "'xy;.

Solution: Recall that R
B =(X'X)"1X'y.
Therefore, the result follows immediately from part (a), i.e
B =(X'X)"' Xy = (X'X) Xy + xivi]

= (X'X) " Xy + (X'X) Xy
Subtracting over, we obtain the result

(c) Using the following adaptation of (2.53)
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Solution: Note that B(; is the estimate excluding the ith observation. Therefore, by
part (a) and (2.53), we find
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Recalling that H = X(X'X) 71X, its ith diagonal element is h;; = x;(X'X)"!x;. Thus,
(X'X) ™ hxx (XX) 1

B = [(X'X)™" + 1— hy X{0)¥ (i)
(d) Using the result of parts (b) and (c), show that
B(i) =B~ 1 _ah“ (X'X) " 'x;.
Solution: By parts (b) and (c), we have
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Problem 4:

Show that S in (10.14) can be found as S = """ | (v; — ¥)(v; —¥)'/(n — 1) as in (10.13).

Solution: Here, v; and Vv denote

v, = <yl> and V= <y> .
X X

Then, notice that
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Summing up this matrix and dividing by n — 1 gives the result.



Problem 5:
Show that Cov(y,w) = oy,3,
U;ngxl (X - /J‘w)
Solution: This result is trivial since
Cov(yv w) = Cov (y7 U;:pza?mlx) = alyxz:;gvl COV(y, X) = U;zz);agayw

and also
Var(w) = Cov(w,w) = Cov (a;xZ;le, a';lefxlx)
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Problem 6:
Verify that R? can be expressed in terms of determinants as in (10.40) and (10.41).

Solution: First, by (2.72), a partitioned matrix such as
An A12>
A =
(A21 Ay

has the determinant given by
|A| = |[A||A1 — ApAL) Ayl

Then, recalling that
S = vr
Sy S:m:
we have its determinant is given by
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Notice that we can reformulate this as
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Now, we see that can write R? as
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To show the second desired equality, we notice that
S =DRD

w2 0ye and Var(w) = o), % 1oy, as in (10.26), where w = pu, +



where D is the diagonal matrix with entries /sy, /511, ..., /Skk- Also, we have

where D, is the diagonal matrix with entries /s11,...,/Sgk. Therefore, we see that we can
write the above as
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since the determinant of a diagonal matrix is the product of the diagonal.

Problem 7:

Prove Theorem 10.7b. The theorem states: The linear function ¢(x) that minimizes E {(y — t(x))Q]
is given by t(x) = By + B]x, where

Bo = Ky — U;mzx_zly'xa

B1 = 2;3610'3135.
Solution: By (4.33), we have that
Elylx] = py + 07,35, (% — pa)-
Now, notice that

t(X) = Bo + BiX = Hy — U;ngxlﬂx —+ a'gl/a:Ea?xlx

= py + 0y, Dpn (X — )
= Ely[x].

Then, the result follows from theorem 10.7.

Problem 8:

Prove Theorem 10.7c. The theorem states: If (y1,%}),..., (Yn,X},) is a random sample with mean

vector and covariance matrix
Y s s!
p=lg) S=(2 ¢ )
X Sya Tx

then the estimators By and B; that minimizes S (yi — Bo — Bixi)z /n are given by
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Solution: First, we calculate
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which gives that BO =7 — Bﬁi Now, we calculate the second partial derivative to be
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Setting this equal to the vector 0, we find that
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Therefore, we have that
B1 = S;rl Syz-

Plugging back into the expression for 30 above finishes the result.



