
Chase Joyner

802 Homework 2

February 8, 2017

Problem 1:

Show that an alternative expression for hii in Theorem 9.2(iii) is the following:

hii =
1

n
+ (x1i − x1)

′(x1i − x1)
k∑

r=1

1

λr
cos2 θir,

where θir is the angle between x1i and ar, the rth eigenvector of X′cXc. Thus hii is large if
(x1i − x1)

′(x1i − x1) is large or if θir is small for some r.

Solution: First recall the expression for hii is given by

hii =
1

n
+ (x1i − x1)

′(X′cXc)
−1(x1i − x1).

By equations (2.101) and (2.104) in the textbook, we can write

(X′cXc)
−1 =

k∑
r=1

1

λr
ara
′
r.

Therefore, plugging this in, we have

hii =
1

n
+ (x1i − x1)

′

(
k∑

r=1

1

λr
ara
′
r

)
(x1i − x1)

=
1

n
+

k∑
r=1

1

λr

[
(x1i − x1)

′ar

] [
a′r(x1i − x1)

]
=

1

n
+

k∑
r=1

1

λr

[
(x1i − x1)

′ar

]2
.

Now, by the law of cosines, we know that if θ is the angle between vectors a and b, then

cos θ =
a · b
|a||b|

=
a′b√
a′a
√
b′b
.

Therefore, we have for our purposes that

cos θir =
(x1i − x1)

′ar√
(x1i − x1)′(x1i − x1)a′rar

.
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Squaring both sides, we obtain

cos2 θir =
[(x1i − x1)

′ar]
2

(x1i − x1)′(x1i − x1)a′rar

and hence
(x1i − x1)

′(x1i − x1)a
′
rar cos2 θir =

[
(x1i − x1)

′ar

]2
.

Noting that a′rar = 1 since it is the eigenvector of a centered matrix, plugging into our
simplified version of hii, we get that

hii =
1

n
+

k∑
r=1

1

λr

[
(x1i − x1)

′ar

]2
=

1

n
+ (x1i − x1)

′(x1i − x1)
k∑

r=1

1

λr
cos2 θir

which proves the result.

Problem 2:

Show that 1
n ≤ hii + ε̂2i /ε̂

′ε̂ ≤ 1 as in (9.24). The following steps are suggested:

(a) Let H? be the hat matrix corresponding to the augmented matrix (X,y). Then

H? = (X,y)
[
(X,y)′(X,y)

]−1
(X,y)′

= (X,y)

(
X′X X′y
y′X y′y

)−1(
X′

y′

)
.

Use the inverse of a partitioned matrix in (2.50) with A11 = X′X, a12 = X′y, a21 = y′X,
and a22 = y′y to obtain

H? = H +
1

b

[
X(X′X)−1X′yy′X(X′X)−1X′ − yy′X(X′X)−1X′ −X(X′X)−1X′yy′ + yy′

]
= H +

1

b

[
Hyy′H− yy′H−Hyy′ + yy′

]
,

where b = y′y − y′X(X′X)−1X′y.

Solution: Using (2.50) and the partitions defined above, we have

H? =
1

b
(X,y)

(
bA−111 + A−111 a12a21A

−1
11 −A−111 a12

−a21A
−1
11 1

)(
X′

y′

)
where b = a22 − a21A

−1
11 a12. Multiplying further, we get

H? =
1

b
(X,y)

(
bA−111 X′ + A−111 a12a21A

−1
11 X′ −A−111 a12y

′

−a21A
−1
11 X′ + y′

)
=

1

b

[
bXA−111 X′ + XA−111 a12a21A

−1
11 X′ −XA−111 a12y

′ − ya21A
−1
11 X′ + yy′

]
= H +

1

b

[
Hyy′H−Hyy′ − yy′H + yy′

]
.
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(b) Show that the above expression factors into

H? = H +
(I−H)yy′(I−H)

y′(I−H)y
= H +

ε̂ε̂′

ε̂′ε̂
,

which gives h?ii = hii + ε̂2i /ε̂
′ε̂.

Solution: Clearly we can factor b into

b = y′y − y′X(X′X)−1X′y = y′(I−H)y.

Now, notice that

Hyy′H− yy′H−Hyy′ + yy′ = (I−H)yy′ + Hyy′H− yy′H

= (I−H)yy′ − (I−H)yy′H

= (I−H)(yy′ − yy′H)

= (I−H)yy′(I−H).

Therefore, we have

H? = H +
1

b

[
Hyy′H− yy′H−Hyy′ + yy′

]
= H +

(I−H)yy′(I−H)

y′(I−H)y
= H +

ε̂ε̂′

ε̂′ε̂

(c) The proof is easily completed by noting that H? is a hat matrix and therefore (1/n) ≤ h?ii ≤ 1
by Theorem 9.2(i).

Solution: By construction of H? in part (a), we notice it is a hat matrix and so by
theorem 9.2,

1

n
≤ h?ii ≤ 1

for all i = 1, ..., n. Therefore, by part (b), we have

1

n
≤ hii + ε̂2i /ε̂

′ε̂ ≤ 1.

This proves the overall result.

Problem 3:

Show that β̂(i) = β̂ − ε̂i(X′X)−1xi/(1− hii) as in (9.29). The following steps are suggested:

(a) Show that X′X = X′(i)X(i) + xix
′
i and that X′y = X′(i)y(i) + xiyi.

Solution: Suppose that X is n× k and define the row vectors

x′i = (1, xi1, xi2, ..., xik)
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for i = 1, ..., n. In this fashion, we can write

X =


x′1
x′2
...

x′n

 .

Then, notice that

X′X =
(
x1 x2 · · · xk

)


x′1
x′2
...

x′k

 =

k∑
j=1

xjx
′
j =

k∑
j=1
j 6=i

xjx
′
j + xix

′
i

= X′(i)X(i) + xix
′
i.

Similarly, we find that

X′y =
(
x1 x2 · · · xk

)

y1
y2
...
yn

 =
k∑

j=1

xjyj =
k∑

j 6=i
j=1

xjyj + xiyi

= X(i)y(i) + xiyi.

(b) Show that (X′X)−1X′(i)y(i) = β̂ − (X′X)−1xiyi.

Solution: Recall that
β̂ = (X′X)−1X′y.

Therefore, the result follows immediately from part (a), i.e.

β̂ = (X′X)−1X′y = (X′X)−1
[
X(i)y(i) + xiyi

]
= (X′X)−1X(i)y(i) + (X′X)−1xiyi.

Subtracting over, we obtain the result.

(c) Using the following adaptation of (2.53),

(B− cc′)−1 = B−1 +
B−1cc′B−1

1− c′B−1c
,

show that

β̂(i) =

[
(X′X)−1 +

(X′X)−1xix
′
i(X

′X)−1

1− hii

]
X′(i)y(i).

Solution: Note that β̂(i) is the estimate excluding the ith observation. Therefore, by
part (a) and (2.53), we find

β̂(i) =
(
X′(i)X(i)

)−1
X′(i)y(i) =

(
X′X− xix

′
i

)−1
X′(i)y(i)

=

[
(X′X)−1 +

(X′X)−1xix
′
i(X

′X)−1

1− x′i(X
′X)−1xi

]
X′(i)y(i).
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Recalling that H = X(X′X)−1X, its ith diagonal element is hii = x′i(X
′X)−1xi. Thus,

β̂(i) =

[
(X′X)−1 +

(X′X)−1xix
′
i(X

′X)−1

1− hii

]
X′(i)y(i).

(d) Using the result of parts (b) and (c), show that

β̂(i) = β̂ − ε̂i
1− hii

(X′X)−1xi.

Solution: By parts (b) and (c), we have

β̂(i) =

[
(X′X)−1 +

(X′X)−1xix
′
i(X

′X)−1

1− hii

]
X′(i)y(i)

= (X′X)−1X′(i)y(i) +
(X′X)−1xix

′
i

1− hii
(X′X)−1X′(i)y(i)

= β̂ − (X′X)−1xiyi +
(X′X)−1xix

′
i

1− hii

[
β̂ − (X′X)−1xiyi

]
= β̂ − (X′X)−1xiyi +

(X′X)−1xi

1− hii

[
x′iβ̂ − x′i(X

′X)−1xiyi

]
= β̂ − (X′X)−1xiyi +

(X′X)−1xi

1− hii
[ŷi − hiiyi]

= β̂ − ŷi − yi
1− hii

(X′X)−1xi

= β̂ − ε̂i
1− hii

(X′X)−1xi.

Problem 4:

Show that S in (10.14) can be found as S =
∑n

i=1(vi − v)(vi − v)′/(n− 1) as in (10.13).

Solution: Here, vi and v denote

vi =

(
yi
xi

)
and v =

(
y
x

)
.

Then, notice that

(vi − v)(vi − v)′ =


yi − y
xi1 − x1

...
xik − xk

(yi − y xi1 − x1 · · · xik − xk
)

=


(yi − y)(yi − y) (yi − y)(xi1 − x1) · · · · · · (yi − y)(xik − xk)

(xi1 − x1)(yi − y) (xi1 − x1)(xi1 − x1)) · · · · · · (xi1 − x1)(xik − xk)
...

...
. . .

...
(xik − xk)(yi − y) (xik − xk)(xi1 − x1) · · · · · · (xik − xk)(xik − xk)

 .

Summing up this matrix and dividing by n− 1 gives the result.
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Problem 5:

Show that Cov(y, w) = σ′yxΣ
−1
xxσyx and Var(w) = σ′yxΣ

−1
xxσyx as in (10.26), where w = µy +

σ′yxΣ
−1
xx (x− µx).

Solution: This result is trivial since

Cov(y, w) = Cov
(
y,σ′yxΣ

−1
xxx

)
= σ′yxΣ

−1
xx Cov(y,x) = σ′yxΣ

−1
xxσyx

and also

Var(w) = Cov(w,w) = Cov
(
σ′yxΣ

−1
xxx,σ′yxΣ

−1
xxx

)
= σ′yxΣ

−1
xx Cov(x,x)Σ−1xxσyx

= σ′yxΣ
−1
xxΣxxΣ

−1
xxσyx

= σ′yxΣ
−1
xxσyx.

Problem 6:

Verify that R2 can be expressed in terms of determinants as in (10.40) and (10.41).

Solution: First, by (2.72), a partitioned matrix such as

A =

(
A11 A12

A21 A22

)
has the determinant given by

|A| = |A22||A11 −A12A
−1
22 A21|.

Then, recalling that

S =

(
syy s′yx
syx Sxx

)
we have its determinant is given by

|S| = |Sxx||syy − s′yxS
−1
xx syx|

= |Sxx|(syy − s′yxS
−1
xx syx).

Notice that we can reformulate this as

s′yxS
−1
xx syx

syy
= 1− |S|

|Sxx|syy
.

Now, we see that can write R2 as

R2 =
s′yxS

−1
xx syx

syy
= 1− |S|

|Sxx|syy
.

To show the second desired equality, we notice that

S = DRD
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where D is the diagonal matrix with entries
√
syy,
√
s11, ...,

√
skk. Also, we have

Sxx = DxRxxDx

where Dx is the diagonal matrix with entries
√
s11, ...,

√
skk. Therefore, we see that we can

write the above as

R2 = 1− |S|
|Sxx|syy

= 1− |DRD|
|DxRxxDx|syy

= 1− |D|2|R|
|Dx|2|Rxx|syy

= 1− |D|2|R|
|D|2|Rxx|

= 1− |R|
|Rxx|

since the determinant of a diagonal matrix is the product of the diagonal.

Problem 7:

Prove Theorem 10.7b. The theorem states: The linear function t(x) that minimizes E
[(
y− t(x)

)2]
is given by t(x) = β0 + β′1x, where

β0 = µy − σ′yxΣ−1xxµx,

β1 = Σ−1xxσyx.

Solution: By (4.33), we have that

E[y|x] = µy + σ′yxΣ
−1
xx (x− µx).

Now, notice that

t(x) = β0 + β′1x = µy − σ′yxΣ−1xxµx + σ′yxΣ
−1
xxx

= µy + σ′yxΣ
−1
xx (x− µx)

= E[y|x].

Then, the result follows from theorem 10.7.

Problem 8:

Prove Theorem 10.7c. The theorem states: If (y1,x
′
1), ..., (yn,x

′
n) is a random sample with mean

vector and covariance matrix

µ̂ =

(
y
x

)
, S =

(
syy s′yx
syx Sxx

)
,

then the estimators β̂0 and β̂1 that minimizes
∑n

i=1(yi − β̂0 − β̂′1xi)
2/n are given by

β̂0 = y − s′yxS
−1
xxx,

β̂1 = S−1xx syx.
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Solution: First, we calculate

d

dβ̂′0

n∑
i=1

(yi − β̂0 − β̂′1xi)
2/n = −2

n∑
i=1

(yi − β̂0 − β̂′1xi)/n

= −2y + 2β̂0 + 2β̂′1x
set
= 0

which gives that β̂0 = y − β̂′1x. Now, we calculate the second partial derivative to be

d

dβ̂′1

n∑
i=1

(yi − β̂0 − β̂′1xi)
2/n = − 2

n

n∑
i=1

(yi − β̂0 − β̂′1xi)x
′
i

= − 2

n

n∑
i=1

[
yix
′
i − β̂0x′i − β̂′1xix

′
i

]
.

Setting this equal to the vector 0, we find that

− 2

n

n∑
i=1

[
yix
′
i − β̂0x′i − β̂′1xix

′
i

]
= 0

=⇒
n∑

i=1

yix
′
i −

n∑
i=1

β̂0x
′
i −

n∑
i=1

β̂′1xix
′
i = 0

=⇒
n∑

i=1

yix
′
i − nyx′ + nβ̂′1xx′ −

n∑
i=1

β̂′1xix
′
i = 0

=⇒ β̂′1 =

(
n∑

i=1

yix
′
i − nyx′

)(
n∑

i=1

xix
′
i − nxx′

)−1
= s′yxS

−1
xx .

Therefore, we have that
β̂1 = S−1xx syx.

Plugging back into the expression for β̂0 above finishes the result.
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